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ABSTRACT 

We address the issue of how to make decisions about the degree of smoothness demanded of a flexible contour used 
to model the boundary of a 2D object. We demonstrate the use of a Bayesian approach to set the strength of the 
smoothness prior for a tomographic reconstruction problem. The Akaike Information Criterion is used to determine 
whether to allow a kink in the contour. 

Keywords: active contours, deformable geometry, Akaike Information Criterion, Bayesian analysis, model-order 
selection 

1. INTRODUCTION 

Deformable geometry, mostly in the form of active contours, is increasingly being used in image analysis. The 
motivation for using this type of representation is that it guarantees a closed curve, which can define the boundary of 
an object of interest. Furthermore, the smoothness of the curve can be controlled by using a regularizer. The present 
work is directed toward understanding how strongly the constraint of smoothness should be enforced. Pushing this 
issue to the logical limit, we also consider how to decide when a smooth curve should be allowed to develop a kink, 
that is, an abrupt change in slope. 

The context of this paper is computed tomography – reconstruction of a 2D density distribution from sets of line 
integrals taken through the unknown distribution. We will concentrate on the underdetermined problem of recon­
struction from projections measured from a limited number of directions. This kind of tomographic reconstruction 
problem can be solved in the appropriate circumstances by modeling the object in terms of a warpable geometry.1–3 

One way to describe the object is in terms of a constant interior density enclosed by a flexible boundary. A generic 
problem arises, however: How does one control the assumed smoothness of the boundary in an optimal way? One 
would like to determine the smoothness from the data, when they are informative enough. So the issue finally comes 
down to quantifying the information contained in the data relative to the position and smoothness of a contour, 
which is an issue relevant to almost every analysis that employs deformable geometry. 

In this paper we determine the strength of the smoothness regularization using a Bayesian approach. We follow 
the methodology described by MacKay,4 who expanded on the work of Gull.5 To make decisions about whether 
to create a kink in the contour, we explore using the Akaike Information Criterion6 (AIC) to make the decision 
about when to allow the smoothness constraint to be broken. The Akaike approach is based on the balance between 
the information carried by the data and the number of degrees of freedom used in a model to describe the thing of 
interest. In a sense the Akaike criterion does not take prior knowledge into account. A fully Bayesian approach to 
this question would be preferable, of course. 

2. BAYESIAN METHODOLOGY 

The Bayesian approach provides a thorough methodology for building models from measurements. Given a set of 
measurements, it can be used to answer the fundamental questions: What are the “best” values of the parameters for 
a particular model? What is the uncertainty in the parameter values implied by uncertainty in the measurements? 
Which of two models is most appropriate to use? If using prior information, how strongly should one rely on it? The 
reader is encouraged to learn more about the fundamentals of Bayesian analysis by studying some of the references 
available.4,5,7,8 
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2.1. The Basics 

In Bayesian analysis, the posterior probability summarizes the full state of knowledge concerning a given situation. 
Given the data d, the posterior probability of parameters a for a particular model Ml is given by Bayes’ law 

p(a|d,Ml) =  
p(d|a,Ml) p(a|Ml) 

, (1) 
p(d|Ml) 

where p(d|a,Ml), the probability of the observed data given a, is called the likelihood, p(a|Ml) is the prior probability 
of a, and p(d|Ml) is called the evidence. The likelihood is specified by the probability distribution of the fluctuations in 
the measurements about their predicted values. The prior probability p(a|Ml) encompasses the full prior information 
about the relative frequency of occurrence of all possible parameters. Since the evidence can be written as p(d|Ml) =  

p(d|a,Ml) p(a|Ml) da, it provides the normalization for the posterior. It is usually not necessary to consider the 
evidence in making inferences about the parameters. However, as it does depend on the model used, the evidence 
plays a central role in making decisions about the correct model, including the choice of regularization parameters. 

It is convenient to deal with the negative logarithm of the posterior: 

− log[p(a|d)] = ϕ(a) = Λ(a) + Π(a) − E ,  (2) 

where Λ, Π, and E are the negative logarithms of the likelihood, the prior, and the evidence, respectively. Λ and Π 
depend on the parameters, while E does not. We often seek to find the parameter values that maximize the posterior, 
called the MAP solution. Of course, the MAP estimate is found by minimizing ϕ with respect to the parameters, 
yielding the estimated parameter values ˆ 

∂ai 
a. The condition for the MAP solution is ∂ϕ = 0 for all parameters ai, 

providing there are no constraints on the parameters themselves. 

Under the assumption that the measurements are subject to additive, uncorrelated Gaussian noise, the minus­
a) =  1

2
log-likelihood is half of the familiar chi squared, Λ(ˆ 

2 χ
2 = 1 

i σi 
−2(di − d ̂ i)2 , the sum of the squared residuals 

(the difference between an observed measurements and their values predicted by the estimated parameters â) divided 
by the estimated variance of the noise, σ2 . 

It is often useful to draw an analogy between the negative log-probabilities, such as ϕ, and a physical potential. 
Such an analogy can be used to give insight into a meaningful form of a prior,1,2 as we do in the next section. This 
analogy has also led us to a new way to explore the uncertainties of parameters estimated in a Bayesian analysis.9,10 

From this analogy it is apparent that minus the derivative of ϕ with respect to a set of parameters represents a force 
that exerts itself on those parameters. This force points the way towards higher probability, as judged by the data 
and the prior information. Likewise, the negative derivative of Λ represents the force on the parameters that arises 
from the data alone. When ϕ can be approximated by a quadratic, as it often can, the force that it generates is 
proportional to the displacement of the parameters away from their MAP values, much like a spring in mechanics. 
With this in mind, the uncertainty of a solution can be seen to be related to the “stiffness” of the model. 

We will show how to employ this analogy between minus-log-probabilities and potentials to understand how a 
model of the reconstructed object needs to change to match the data. 

2.2. Choosing the Strength of the Prior 

The Bayesian approach provides a means to choose models, as summarized by MacKay.4 For example, it is possible 
to determine so-called hyperparameters, which include parameters that control the strength of priors. Suppose that 
the prior is written as Π(a) =  αC(a), where the function C is used to characterize the prior on the parameters a. If 
the value of α is not known beforehand, we need to infer it from the data using Bayes’ law: 

p(α|d, C,Ml) =  
p(d|α,C,Ml) p(α|C,Ml) 

, (3) 
p(d|C,Ml) 

where p(d|α,C,Ml) is the likelihood for α, p( ∫ α|C,Ml) is the prior on α, and p(d|C,Ml) is the evidence for the data 
given the form for the prior C, p(d|C,Ml) =  p(d|α,C,Ml) p(α|C,Ml) dα. This latter quantity is not important for 
infering α. The likelihood of α is of course the same as the evidence for the data given α, C, and the object model 
Ml, which is the denominator in Eq. (1) but with the α and C dependences explicitly shown. We thus see how the 
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normalizing term of Bayes’ law for parameter estimation becomes the essential factor in making inferences about the 
model, in this case for the prior. 

In his derivation for the appropriate value for α, MacKay assumes that the prior on α is flat. The MAP estimate 
for α then occurs at the maximum in the evidence in Eq. (1). By assuming that the minus-log-posterior for a, given 
by Eq. (2), can be approximated by a quadratic function with a curvature matrix A, MacKay shows how to obtain 
Gull’s result for the condition to estimate α: 

αC(â) =  γ(α) , (4) 

where γ(α) =  k − αTrace[A(α)−1] is called the number of good parameter measurements, in the case of k parameters 
a. The quantity C(â) is the prior evaluated at the MAP estimate for a specific value of α. 

The parameter γ is essentially the number of degrees of freedom in the model that are effectively determined by the 
data rather than by the prior. For very large values of α, γ approaches zero, because the prior eventually overwhelms 
the likelihood. As α goes to zero, γ approaches k, because the prior becomes too weak to affect the parameter values. 
Equation (4) is an implicit equation that must be solved for the most probable value of α. Skilling11 has shown how 
one can estimate the Trace[A(α)−1] in (4) for very large matrices using a Monte Carlo method. We will discuss how 
to use this expression to choose the strength of the smoothness prior on the deformable boundary of an object. 

2.3. The Akaike Information Criterion 

MacKay also showed how the Bayesian approach can be used to select the appropriate model. However, we shall try 
to avoid the detailed Bayesian calculation and instead rely on the Akaike Information Criterion6,12 (AIC) 

AIC = 2Λ(â) + 2k ,  (5) 

where k is the number of parameters in the model and â is the parameter set that minimizes Λ. According to the 
AIC, one accepts a new parameter if the AIC drops with the addition of the new parameter. This criterion can be 
used to determine when the data suggest that the boundary of our reconstructed object should depart drastically 
from being smooth. The AIC is closely related to a Bayesian approach.13 Since typically 2Λ = χ2 , this criterion 
is comparable to the rule-of-thumb that one may add a new parameter to the model as long as the minimum in χ2 

drops by more than one. However, the AIC is more conservative than that rule of thumb because it requires that 
χ2 drop by at least two. If the AIC is not met, the new parameter is needlessly adding complexity to the model. 
The AIC thus plays the role of Occam’s razor, which is the Bayesian way of stating our preference for parsimonious 
descriptions of reality. 

3. DEFORMABLE CONTOURS 

We will model objects to be reconstructed in terms of their boundary and their interior density, which will often be 
taken to be constant. A continuous contour can be approximated in discrete terms as a finely divided polygon. The 
length of the edges of the polygon can be made short enough to adequately describe any degree of resolution desired. 
The use of a polygon actually imposes a significant desirable constraint on the result of an analysis, namely that the 
object’s boundary is closed. 

3.1. Continuous Model 
We wish to place a prior on contours to prevent them from becoming unnecessarily jagged. To impose such smoothness 
on a continuous model of a contour, we use what has become a standard choice for which the minus-log-prior is taken 
to be proportional to κ2(s) ds, where κ(s) is the curvature of the curve. This prior serves to keep the curve smooth 
because severe curvature is penalized. This form for a prior has a physical analog in the formula that describes the 
potential energy created by bending a stiff rod. We note that since the integral has the dimensions of reciprocal 
length, it depends on the units of length in which it is calculated. To overcome this problem, we suggest that the 
integral be multiplied by the total arclength of the boundary S to form a dimensionless quantity. This quantity is 
related to the shape of the curve, not its size, as suggested in Ref. 14. For reasons that will become apparent later, 
we suggest an additional normalizing factor of (2π)−1 . 

A noteworthy extension to the above approach to smoothing is to allow the strength of the constraint to vary 
with position around the boundary. This is simply achieved by weighting the integrand of the curvature integral by 
a function w(s), so that it becomes w(s) κ2(s) ds. 
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Figure 1. A composite of four images. The upper-left section shows the test object used to demonstrate the effect 
the smoothing prior has on the boundary of a reconstructed object. The objective is to match this shape with 
an object defined in terms of its flexible boundary. The upper-right shows the reconstructed object obtained for a 
relatively large value of the regularization parameter, α. The smoothing constraint is turned off at the corners. The 
result of increasing α by successive factors of two is shown in the lower left and the lower right, respectively. 

3.2. Discrete Model 

For our discrete model we replace the integral by a sum of contributions associated with each vertex in combination 
with half of each neighboring edge of the polygon. We approximate the curvature by 

tan( 1 
2 θ)κ = √ 

L1 L2 
, (6) 

where θ is the angle between the two edges meeting at the vertex and L1 and L2 are the half lengths of the two 
edges. When L1 =  L2, this formula agrees with the curvature of a circle that is tangent to the two edges at their 
midpoint. When L1 is not the same as L2, the κ obtained is the geometric mean of the curvatures of two circles, 
one for a corner of half-edge length L1 and the other for L2. One desirable consequence of Eq. (6) is that κ goes 
to infinity when an edge folds back on its neighbor. This type of action mimics what we would like, because it 
strongly discourages kinky behavior. For the discrete version of ds, we simply use ∆s = L1 +  L2. Consequently, the 
minus-log-prior on the curvature becomes 

C = 
1 
2π 

 

 

 

 

 

 

 

 , (7) 
j 

tan2(θj /2) 
wj 

L− L+ 
j j 

(L− + L+ 
j j ) 

j 

(L− 
j + L+ 

j ) 

where the sums are over the vertices of the polygon, π − θj is the internal angle at the jth vertex, L− 
j and L+ 

j are 
the half-lengths of the previous and next edges of the polygon, and wj is the weight for the jth vertex. 

Figure 1 demonstrates the effect of the above prior on curvature. The objective is to match the shape in the 
upper-left panel, a rectangle with slots of various widths, by an object defined as unity inside a closed curve and 
zero outside. The initial shape of the boundary is a rectangle, which is achieved by using a polygon in which each 
of the long straight sides of the rectangle are comprised of 24 edges and each of the short sides of 8 edges. The 
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Figure 2. The data-flow diagram for the Bayes Inference Engine that is used in the present tomographic recon­
struction problem. 

weight function wj in the constraint sum is set to zero at each of the four corners. In this mock problem, we use 
for χ2 the sum of the squares of the difference between the target shape and the active object. The other panels 
in the figure show how the sides of the rectangular object are sucked into the slots in the original figure. From the 
analogy between this example and the simple bending of beams, we expect the constant pressure on the stiff contour 
would result in the contour reaching a state of constant curvature within each slot, independent of the width of the 
slot. Furthermore, the curvature of the boundary should be inversely proportional to the strength of the prior, i.e. 
α. These conditions are qualitatively met in this example. Deviations from this expected behavior probably occur 
because of the discrete approximations used for the image in terms of pixels and the contour, i.e. polygon. 

4. THE BAYES INFERENCE ENGINE 

The Bayes Inference Engine (BIE) is used in this study to create and analyze the data from the simulated tomographic 
reconstruction problem, which will be discussed in the next section. The BIE is a versatile application, developed 
by us at the Los Alamos National Laboratory, that allows one to easily develop complex models for both the objects 
under study and the measurement process. Various aspects of the BIE are described elsewhere.3,10,15–18 

4.1. Data-flow Diagram 

The user interface for the BIE is a graphically programmed data-flow diagram. The data-flow diagram used for 
this study is shown in Fig. 2. The boxes on the top row, from left to right, represent the original image (to be 
reconstructed) followed by the transforms to take the projections of that image and to add noise to the projections. 
The result of this simulation of the measurements is fed into the minus-log-likelihood module (the box with the Φ 
inside it). The second row comprises the model of the object used to analyze the data. The leftmost box represents 
the finely-divided polygon used to define the boundary of the object. This polygon is converted to a pixelated image, 
which is 256 × 256 in size, in the next box. In this conversion, it is assumed that the inside of the polygon has a 
constant density of unity and the density outside is zero. This image is then blurred by convolution with a Gaussian 
whose width can be adjusted. The reason for this operation will be described momentarily. The last box on that 
row takes the projections of the blurred image and feeds the projections into the likelihood. 
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The minus-log-likelihood is calculated here as 1 
2 χ

2 . The minus-log-prior, which is based on the boundary model, 
is represented by the box with a Π in it The value of the minus-log-likelihood is added to the minus-log-prior in the 
box labeled Ψ to yield the minus-log-posterior. The minus-log-posterior is minimized by the box on the right, called 
the Optimizer, by adjusting the parameters in the boundary model. The line at the bottom of the diagram indicates 
this feedback. 

4.2. Adjoint Derivatives of ϕ 

A unique feature of the BIE is its ability to provide derivatives of ϕ with respect to model parameters at any point in 
an arbitrary data-flow diagram. This remarkable feat is achieved by combining the technique of adjoint differentiation 
with object-oriented programming.15 In adjoint differentiation the derivatives of a scalar quantity at the end of a 
sequence of transformations are propagated through the data-flow diagram in the reverse direction. This process 
merely amount to an implementation of the well-known chain rule of differentiation. Each transformation in a BIE 
model can display its own adjoint derivative with respect to its input data, as well as its own output data. 

This feature allows us to view the gradient of ϕ with respect to every aspect of the model. For example, the log­
likelihood module (the box with the Φ on it) can display the derivative of the log-posterior (in order to be confusing, 
the box with the Ψ on it) with respect to its inputs, namely the projection data that are compared in calculating it. 
This derivative is simply the residuals, the difference between the measurements and their values predicted by the 
BIE model. Working backward along the second row of the diagram in Fig. 2, the projection transform can show the 
gradient of ϕ with respect to its input image, which is the backprojection of the residuals (coming from the adjoint 
output of the log-likelihood module). Going back one more module the adjoint derivative shown by the convolution 
transform is the convolution of the backprojected residuals with the same (actually adjoint) blur function as used in 
the forward calculation. Ultimately, we end up at the beginning of the formulation of the forward model with the 
specification of the object’s boundary. This module can show the derivatives of ϕ with respect to the vertices of the 
polygon as scalable vectors emanating from each vertex.19 This convenient method of visualizing the gradients of ϕ, 
coupled with the interpretation of these gradients as forces on the parameters being generated by the data, thorough 
the log-likelihood, or by the prior, provides a powerful paradigm for understanding the details of the analysis and 
the interplay of conflicting demands on the model. 

The blurring module in the middle of the second row of the data-flow diagram is included to facilitate the 
multiscale approach to fitting contours, as described by Cunningham et al. in these Proceedings.19 The essential 
idea is that the forces acting on the contour to bring it into agreement with the data become more homogeneous and 
make them approximately linear with distance of the contour from the position demanded by the data. The blurring 
effectively produces multiscale derivatives. A large amount of blur is used at the beginning of the optimization 
process to avoid uneven displacements of the curve when it is far from the final shape. The blur is decreased as the 
final shape is approached. 

5. RESULTS FOR A TOMOGRAPHIC PROBLEM 

We will demonstrate how the Bayesian approach can be used to determine the strength of the curvature prior in a 
tomographic reconstruction problem. The object that we wish to reconstruct is shown in the upper-left portion of 
Fig. 3 as a 256×256 pixellated image. It is assumed that six parallel projections of the object have been measured at 
an angular spacing of 30 degrees. At each angle, 256 evenly-spaced line integrals are measured. The measurements 
are degraded by adding to them uncorrelated Gausian noise with an rms value of 0.02, which is about 1% of the 
largest projection value. The knowledge that the object is reasonably compact and has a constant density within 
its fairly simple boundary is to be exploited to make this problem soluble. The object is modeled in terms of a 
deformable boundary, within which the density is constant. 

The model implemented in the BIE to analyze these data was discussed in the previous section. The minus-log­
posterior is given by Eq. (2) with the minus-log-prior given by Π = αC, where C is the constraint on the curvature 
from Eq. (7). The polygon model used to represent the boundary of the object has 100 edges and the interior density 
is assumed to be known. The initial shape of the object is chosen to be a circle, of unit radius, which is the default 
shape for our prior. 
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Figure 3. The upper-left panel shows the original object to be reconstructed from six slightly noisy projections. 
The other three panels show the reconstructions obtained for specific values of the parameter α; 250 for the upper 
right, 7.5, lower left, and 0.75, lower right. 

Table 1. Summary of reconstructions of the object for several fixed values of α. 

α Λ =  1 
2 χ

2 Π =  αC C γ̂ 

250 2950.2 6873.3 27.5 24 

25 1150.2 1160.3 46.4 56 

7.5 899.0 443.5 59.1 80 

2.5 824.3 179.2 71.7 100 

0.75 795.8 65.4 87.2 112 

5.1. Reconstruction Without Kinks 

Our first effort is to obtain the best reconstruction that we can employing just the prior on curvature with no kinks 
allowed. Using the model for the object described in the previous sections, we use the Optimizer of the BIE to find 
the contours that minimize ϕ for fixed values of α. The resulting objects provided by the BIE are shown in Fig. 3 
for three different values of α. The three reconstructions resemble the original object more and more as α decreases. 
However, for the smallest value of α, the boundary starts to get a little ragged, which is just detectable in this figure. 
The quantitative values obtained for the important quantities are given in Table 1 for five values of α. We can see 
from the rise in C that the boundary indeed develops a larger mean-square curvature as α decreases. 

To fully implement Gull’s Bayesian criterion for determining the best value for α, we would need to evaluate γ. 
While this calculation is not impossible, we do not yet have the means to do so. However, given the interpretation 
of γ, we can roughly estimate γ for a contour by counting the number of degrees of freedom that appear to be 
dominated by the data for each α. Figure 4 shows a plot of the curvature of the boundary of the reconstructed object 
for α = 2.5. The default curvature for our prior is constant with a value of one, because we start with a circle of 
unit radius. Therefore, any deviation from a constant value of curvature must be caused by the data. We argue that 
we can get a reasonable estimate for γ by determining the minimum number of parameters needed to account for 
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Figure 4. A plot of the curvature of the reconstructed boundary versus the vertex index for α = 7.5. The value of 
γ is estimated from the number of peaks in this plot. 

the structure in the curvature plot. If we consider each bump in the curve as a quadratic function of arclength, then 
we would need to use a Bézier patch of fourth degree to represent the contour associated with that bump. To avoid 
discontinuities in the slope of the curvature plot, we would apply C3 constraints across patch boundaries. Then each 
bump (patch) would have two free parameters. Therefore, we arrive at an estimate for γ̂ of four times the number 
of distinct local maxima in the curvature plot. For Fig. 4 we count 20 peaks to obtain γ̂ ≈ 80. The estimated values 
of γ̂ for all the reconstructions are given in Table 1. 

From this analysis, Gull’s condition, αC = γ is seen to be achieved at α ≈ 1.4. From the appearance of the results 
shown in Fig. 3 for α = 0.75, this result seems acceptable, although a larger value of α might be preferable because 
the noise is starting to unduly affect the boundary. Of course, we should keep in mind that our preference for a 
smoother boundary over one that is beginning to show the effects of noise in the measurements can be incorporated in 
Bayesian analysis through an appropriate adjustment of the prior on α. We conclude that Gull’s condition provides 
a reasonable way to choose the strength of a prior. 

5.2. The Case For Kinks 

Having performed the analysis outlined above, we should ask whether the data are adequately matched by our final 
model. The value of χ2 for α = 0.75 is 1596, which is about the same as the number of measurements∗ , 1536. We 
might conclude that the data are matched well enough. However, a better approach is to look at the residuals. 
We can do this in the domain of the problem, rather than in that of the measurements by displaying the adjoint 
derivative of ϕ with respect to the reconstructed image densities. That is, we view the backprojected residuals, as 
shown in Fig. 5 for α = 25. We see in the left-hand image that there is a distinctly coherent pattern suggesting that 
the reconstruction is deficient in two places, which are at regions of very high curvature in the boundary. It seems 
that the data are trying to tell us that even higher curvature is desirable. Indeed, we know that as the stiffness of 
the boundary is decreased by lowering α, the curvature in these regions keeps increasing. In our mechanical analogy, 
the data are trying to “break” the curve by bending it back on itself. Thus we are led to consider the possibility of 
a kink at these locations. 

∗In this kind of problem, one would normally expect to achieve a value of χ2 that is less than the number of measurements. For the 
particular data set used in this study, the rms noise value is actually 1.028 instead of unity, so that the sample value of χ2 when the true 
model is used is 1622. The minimum value of χ2 is indeed smaller than this value. 
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Figure 5. The image on the left shows the contour reconstructed for α = 25, superimposed on the backprojected 
residuals, which indicate that the data demand a decrease in density at the apex of the indentation in the contour and 
an increase in density at the upper-left apex. The result of allowing a kink to develop at these two points is shown 
on the right; the backprojected residuals now do not appear to pose any concerted demands on the reconstruction. 

Table 2. As in Table 1 except that the contributions to the curvature constraint integral from the two points of 
highest curvature are ignored, producing a kink at each of these points. 

α Λ =  1 
2 χ

2 Π =  αC C γ̂ 

250 900.8 4217.5 16.9 24 

25 796.5 446.8 17.9 40 

7.5 789.3 138.7 18.5 68 

2.5 786.1 48.7 18.7 112 

0.75 779.4 19.3 25.8 124 

In our present context, a kink is allowed to occur at a particular vertex by setting the weight in the constraint 
calculation (7) to zero at that vertex. The effect of doing this at the two locations identified above is shown in 
the right-hand image of Fig. 5. The MAP solution for the same value of α results in the desired appearance of 
uncorrelated backprojected noise. The reconstructions obtained under these conditions are shown in Fig. 6. Even for 
the highest value of α of 250, the reconstruction matches the original object quite well, just because the kinks allow 
the boundary to yield better to the forces arising from the data. The match to the original object barely improves 
for lower α. This observation is reflected in the fact that the values of the minus-log-likelihood (Λ), given in Table 2, 
decrease very little as α decreases. We also note that while the introduction of the kinks has not affected γ̂ very 
much, αC has been reduced considerably. The result is that Gull’s condition for the appropriate strength of the 
prior is met at around α = 5. The incorporation of kinks pushes the preferred α value higher, favoring a smoother 
boundary. 

The important issue is whether we can determine from the data that it is reasonable to add the kinks. The AIC 
requires that the minus-log-likelihood decrease by more than unity for each additional parameter that is introduced 
into a model. Adding a kink effectively increases the number of parameters by two, as can be seen by consideration 
of Bézier patches. A reduction of the constraint across a patch boundary from C1 to C0 , removes two constraint 
equations, one for each spatial variable, and hence adds two parameters that need to be determined. As can be seen 
by comparing Tables 1 and 2, the minus-log-likelihood always drops by at least four units and so adding these kinks 
is justified by the AIC. 
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Figure 6. As in Fig. 3, except that the contributions to the curvature constraint integral are removed at the two 
vertices of maximum curvature in that figure. 

6. DISCUSSION 

It should be clear that the Bayesian approach to analysis of data goes well beyond just estimating the parameters in 
a model that best fit a set of data. It allows one to make inferences about which models are more likely and provides 
guidance for extending models in the light of the data. 

Although we used the AIC in this study to justify adding kinks to a boundary, a fully Bayesian approach would 
be preferable because it would allow one to explicitly incorporate prior knowledge into the decision process. After 
all, in a specific situation it might be well understood that kinks are extremely unlikely. One would therefore want 
to allow kinks only under extreme pressure from the data. It should also be said that the rules of probability require 
that one not really choose a specific value of a nuisance parameter like α. Instead, one should marginalize (integrate) 
over α in obtaining the MAP estimate of the model parameters. This process might be realizable, even for problems 
involving many parameters like this one, through the use of Markov Chain Monte Carlo (MCMC) methods20 to 
randomly sample the full posterior p(α, a|d,Ml). 

An interesting extension to this preliminary work is to consider the contribution to the curvature sum (7) at 
each vertex of the polygon model for the boundary to be a hyperparameter. Thus, instead of trying to determine 
α, we would drop α and try to determine every one of the weights wj in Eq. (7). While this problem might seem 
intractable, it may be soluble using MCMC methods. 
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